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Various reasons have been given as to why the trajectories and circulations of vortices 
generated at sharp edges do not follow classical similarity-theory predictions for at 
least an initial short time. Amongst these are the effect of the particular flow geometry 
(e.g. duct with wedge, nozzle) distant from the salient edge (for rectilinear vortices); 
axisymmetry (for ring vortices) ; end effects (for rectilinear vortices) ; viscous dif- 
fusion; finite thickness of the detaching shear layer, as well as secondary vorticity 
caused by the interaction of the primary vortex with the edge at which it was 
generated. A further process that may be active is that of viscous entrainment. 
Experiments, in which essentially straight-line vortices were generated, indicate that 
of the seven possibilities mentioned, the first five do not play a significant part. All 
models consist of a basic flow onto which the modelled vortex is superposed. Thus 
either the basic flow or the vortex model are at fault. The basic flow onto which the 
vortex is superposed may well not be a pure edge flow, but one that is already taking 
on the character of an entraining jet flow. On the other hand, the vortex model fails 
to incorporate secondary vorticity which, particularly when rolled up, might be 
expected to be dynamically important. 

1. Introduction 
During the past few years certain seemingly contradictory results have been 

obtained, both for predictions and measurements of the motion and circulation of 
vortices generated at a sharp edge. Thus, for example, a student wishing to know the 
initial lift of an impulsively starting cusped amofoil (edge angle y = O"), will find 
values in the literature ranging from zero to infinity (see Graham 1983), depending 
on how the starting vortex is chosen to move! The two lines of thought leading to 
this extreme discrepancy both model such a starting vortex as an infinitely thin 
vortex sheet in an otherwise inviscid flow (the question as to whether this problem 
is well-posed is still unsolved). The line of thought (e.g. Graham 1983) leading to the 
00 -value assumes a self-similar potential flow? near the edge for an 'embryonal ' time 
te of the order L / V  (L, some typical length; V, some typical velocity), after which 
the geometry distant from the edge will dominate the flow. On the other hand the 
line of thought leading to the 0-value (e.g. Chow & Huang 1982) considers the distant 
geometry to be important ab initio to the flow at the edge - the flow can never be 
considered self-similar. The most obvious kinematic consequence is that the initial 
path of the vortex centre must be straight for the former model, whereas generally 
curved for the latter. 

t One that may be made steady by a transformation using powers of the time only. 
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Now although earlier experiments (Kaden 1931 ; Wedemeyer 1961) on the trajec- 
tory of real starting vortices indicated that they may behave in a self-similar fashion, 
more recent experiments (Didden 1979, 1982; Pullin & Perry 1980; Blondeaux & 
De Bernadinis 1983) indicate the contrary. The above explanation for this non- 
self-similar behaviour, used for example by Blondeaux & De Bernadinis (1983), has 
the following major problem : that an inviscid starting edge flow embedded in some 
geometry which may be considered distant from the salient edge has been more or 
less tacitly tackled using matched asymptotic expansions. Here the flow is effectively 
divided into two regions, an inner region near the edge, where the flow is dominated 
by the growing vortex, and an outer region, in which the flow is determined by the 
steady potential describing the inviscid flow through or about that particular 
geometry. Matching is done by taking the usual limits and equating in the known 
fashion, from which the constants in the resulting formulae are obtained, whereby 
the question as to the extent of the overlap region is not easy to solve. We shall see 
that the line of thought mentioned at the outset predicting a non-self-similar vortex 
roll-up ub initio effectively recognizes no such inner region insofar as the source of 
this non-self-similarity is thought to lie in the outer flow. 

There are other perhaps more persuasive reasons as to how a characteristic length 
could enter the problem from the beginning of the motion. An axisymmetric 
geometry, such as that used to generate ring vortices, will introduce a length, the 
radius of curvature, into the problem from the outset. For real rectilinear vortices, 
the flow induced by the existence of the ends may affect the flow elsewhere. Viscous 
diffusion too might introduce a length which will grow as (vt)k Another process, 
mentioned by Pullin & Perry (1980), is that of secondary-vortex generation at the 
edge (see also Walker 1978). Such generation would obviously affect the primary 
vortex so long as the two were of comparable size. Also, secondary vorticity, even 
if it  does not roll-up, causes both the already finite thickness of the shear layer to 
increase, and the total effective circulation generated at  the edge to reduce. A final 
process that we shall discuss is that of viscous entrainment. 

2. Analysis 
If the steady potential flow for the geometry in question is W = F ( d ) ,  where 

z’ = x’ + iy’ is based on the coordinates of the edge-centred frame of reference shown 
in figure 1 (a), using the local lengthscale 8 = (r(t) t);, the potential W, for the inner 
flow is 

For geometries where Schwartz4hristoffel-type transformations can be used, if the 
origin is taken to be the salient edge, the outer potential W, = W consists of a series 
with generally complex coefficients. We may then write the leading term as 

with p real; L the typical length, and l /n = 2-yo/180. The flow in (1) is called 
asymmetric since it transforms to a constant translational flow with velocity V in 
the (6,  v)-plane (i.e. a flow not symmetric about the &axis) under the transformation 
z = eln with g = f+iq.  The asymmetric quality of this potential is indicated by the 
arrows in figure 1 (a). Pullin (1979) considered the case of a vortex growing at a nozzle 
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FIQURE 1.  Vortex growth at an edge. In (a) the asymmetric V-, and in ( b )  the symmetric 
U-component predominates. 

of width or diameter L, the flow being set into motion by a piston moving with 
velocity V = Up. Now the above constant q is determined by the overall geometry 
of the flow. He calculated q to be 1/(2x)i for an axisymmetric nozzle, compared to 
the classic 1/d for the corresponding two-dimensional nozzle (both with y = 0’). 

If we take only the leading term, (l), into consideration, Wo = 4. Using the 
matching idea, the outer flow behaves as (1) as z’+O. From the form of the potential 
Wo above, we can write the inner potential W, to leading order as 

as z’ +. 00. Matching inner and outer flows yields 

and 

Now p is a constant determined by the local flow situation. Pullin (1978) considered 
this to be that constant determined by the vortex model alone (e.g. point vortex, 
spiral). He calculated p for a vortex model including the effect of the spiral form for 
the rolling up sheet (the simple point-vortex representation was developed by Brown 
& Michael 1955). In  order to do this he wrote 8 in the form 

1Kz-n) 
8 = (q;) L, 

s now being independent of the vortex model owing to the removal of p. He described 
p above in terms of two vortex-model-dependent constants p and J, and sought a 
solution zh as 

for the position of the vortex centre. Here B = pe’(~%-)’/~) is the complex shape 
function; p is the non-dimensional model-dependent radius and Fc is the angle that 
the line rh (see figure 1) of length lzcl makes with the projection of the windward wall. 
The factor C = ((2--n) (1 - -n)}11(2-n)  keeps B finite for all edge angles. According to 
(3) the vortex centre will move as 

2; = c8B (3) 

{xi; yk} = {Re (CsD); Im (CsD)}, 
1 

(4) 
P L X  183 
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at a constant angle pc to the edge, the components being the real and imaginary 
arguments of z:. For a point vortex 

pc = Aarceos($)-90(2-;). (5) 

Such a vortex generated at an edge (y = O"), for example, would move along a 
straight line at right angles to the edge (Be = goo), its centre having coordinates 

{x'; y'} = {0( Vt):;  0.669( Vt):}. 

Pullin's (1978) inclusion of the spiral changes (6) to 

{d; y'} = {0.155( Vt)b; 0.701( Vt);}, 

/?, being 102.5" instead of 90" for y = 0". The circulation r becomes 

S2 

t 
r = PJ-, (7) 

where J is the vortex-model-dependent non-dimensional circulation. We note that by 
(2), since the constant qo taking the geometry into account is found in s only, by (3) 
and (7) 8 cancels out of the non-dimensional trajectory r:/(rt)k Pullin's (1978) 
formulation thus predicts identical scaled trajectories for planar and axisymmetric 
geometries. This is perhaps somewhat surprising since, at least for the case of vortices 
distant from the generating edges, one would expect the velocity of a ring to be 
greater than that of an equivalent pair (ratio O[log8R/c], where R/c is the ratio of 
ring-to-core radii). The tacit implication is thus that the circulation decreases with 
decreasing radius in such a way that r;/(I't)+ remains constant - a claim that begs 
experimental verification. 

Recognizing the fact that there may be flows where a quantity such as the angle 
of the flow distant from the edge might enter into the local edge problem as posed 
in the above fashion, Graham (1977, 1983) included this aspect of the distant flow 
via the angle of incidence of an aerofoil : the distant flow varies as U = U, cos a and 
V = U ,  sina, where 01 is the angle of attack and U ,  is the (constant) distant flow. 
He suggested that one could superpose the symmetric potential 

Fi = qUL&)'" . 

(stagnation flow symmetric about the [-axis under the abovementioned transform- 
ation with characteristic velocity U )  as indicated by the arrow in figure 1 (b), onto 
the asymmetric potential (l) ,  yielding 

&=l(,+Fi. (8) 
He suggested that the second term in (9) might dominate for a wing that begins 
heaving in a steady flow. If it does, then for sharper edges, Fi will be the relevant 
potential, and the point-vortex centre's coordinates become 

in place of those given in (6) - the vortex advects passively in the U-field. Graham 
emphasized, however, that the first term would be dominant for starting flows. Thus, 
if (1) adequately describes the outer flow, we should expect (4), (5) and (7) to describe 
vortex motion for a time of at  most t, of the order of L/  V .  For after this time terms 
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(with both real and imaginary components) of higher order will dominate the vortex 
motion, thereby causing the flow to lose its self-similarity. 

Now t ,  is the upper bound for the above considerations to hold. The lower bound 
can be obtained by comparing typical viscous- with inviscid-length growth rates. 
Comparing (vt); with 8 as in (2), one sees that viscous effects might be expected 
for an initial time t,. This time, however, turns out to be small. For example, an 
impulsively started flow with y = 0'; L = 30 mm; V = 30 mm/s and p/q = 1 in 
water yields t ,  = 1.4 ns. Dropping the assumption of the impulsively started flow 
implicit in (2) increases this time considerably. For the acceleration times used 
in this experiment, however, the time during which viscous flow conditions should 
hold sway according to the above consideration remains insignificantly small. 

How do experiments corroborate these predictions ? Didden (1979,1982) measured 
both trajectories, as well as the circulation of ring vortices generated at a nozzle 
with y = 0'. He found the trajectories to be curved until the ring was completely 
formed. Further, the initial circulation was substantially smaller than that predicted 
by (7). The power to which the time had to be raised was substantially larger than 
that predicted by (7). He accredited these discrepancies to the difference between 
plane and axisymmetric geometries. Yet, as mentioned above, according to Pullin 
(1979) the symmetry should change q only. Blondeaux & De Bernadinis (1983) 
determined the motion of the centre of a single vortex generated at the edge of the 
asymmetric nozzle (yr = 0' ; yf = 180'; H = 25 mm; W = 10 mm) shown in figure 2 - 
the nozzle end of the apparatus used in this experiment. Their apparatus differed from 
Didden's (1979) not only in that it was rectangular, while his was axisymmetric, but 
also in that there was only one edge for vortex generation rather than two - which 
would have been the rectilinear pendent to the vortex ring. Nonetheless they too 
found the vortex trajectories to be always curved: Didden's time power for the x' 
component was f, theirs 1. The time power for the y' component was $ for both - that 
predicted by (6). Blondeaux & De Bernadinis (1983), however, argued that, since the 
geometry was asymmetric, a weak symmetric U-component (see figure 1 b) would be 
introduced into the flow which would significantly change the trajectory from the 
beginning. They thus used y' as in (4), but x' as in (9) - the law arising from the 
symmetric flow potential. Pullin & Perry (1980), using a wedge of variable edge angle 
y placed in a channel of rectangular cross-section, also found that the trajectories of 
rectilinear vortices deviated from similarity-theory predictions. They felt the main 
reason for discrepancies to be the production of secondary vorticity (at the leeward 
wall, see figure 1)  of the opposite sign to that of the primary vortex. Didden (1979) 
in fact measured this vorticity for the case of ring vortices. A further problem that 
exists for the case of straight-line vortices is that they are necessarily generated in 
three dimensions. To what extent we may consider the flow in the mid-plane to be 
two-dimensional has not yet been clarified. 

A final problem is that of entrainment, mentioned at the outset. For once the vortex 
has disappeared from the edge, an entraining jet has developed. For a laminar jet, 
one may consider this entrainment process to be of an essentially viscous nature - the 
shear layers emerging from the edge first draw distant fluid from the sides towards 
it, then drag this fluid along by virtue of its non-zero viscosity. This entraining effect 
has been the object of many studies. For example, Taylor (1958) and Kraemer (1971) 
simulated such a flow using a potential approach. For the far field at the sides of the 
jet, Kraemer successfully modelled the entraining effect along the edge of the jet with 
a distribution of sinks. Vortex roll-up is a very different problem. Nonetheless, when 
a vortex begins to be generated a shear layer emerges and begins rolling up. One 

7-2 
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. Roof 

. Floor 

FIQURE 2. Nozzle of the apparatus used, with H = 30 mm and W = 60 mm. 

might, however, expect fluid to be entrained both via a ‘Biot-Savart ’-type effect due 
to the vortical nature of the layer, as well as to the abovementioned viscous sink 
effect. Although the speed with which a typical viscous length would grow is as (& 
the sink effect for the above mentioned distant flow will set in directly with the 
emergence of the shear layer. To what extent this sink effect due to the shear layer 
should be accounted for, in the formulation of (l), for example, is an open question. 
Does the shear layer begin entraining in this sense from the beginning, or is there 
a time in which one may consider this process to be inactive? 

Although the list may well not be exhaustive, we have raised seven possible 
processes that might be important for the non-similar behaviour of the starting 
vortex : 

the effect of the distant geometry for planar geometries; 
the effect of axisymmetry for the case of ring vortices; 
diffusive viscous effects having their origin at the wall; 
secondary vorticity ; 
finite thickness of the detaching vorticity layer ; 
the effect of experimental boundedness of rectilinear vortices ; 
the effect of viscous entrainment as a jet-type flow develops. 

Our experiment was designed to single out some of these processes and assess their 
importance in rendering the flow non-self-similar. 
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15 atm. air pressure 

4,Bleeder 

FIQURE 3. Experimental arrangement. Lengths in mm. 

3. Experimental arrangement 
Figure 3 shows the experimental arrangement. The duct had 10 mm thick walls, 

roof and floor, and was 2 m long with a height H = 30 mm and a width W = 60 mm. 
These dimensions could be reduced by slipping in long pre-cut plates. The ‘diffusor ’ 
end was submerged in a glass-walled water tank measuring lx0 .4x0 .4m.  The 
upstream end was connected via a flow rectifier to a valve (to adjust the flow rate), 
a magnetic valve (k: 10 ma opening time) and this, in its turn, to a reservoir filled 
with water under a constant air pressure of up to 15 atm., the whole being free to 
move in all directions for laser measurements. The temperature of the water remained 
to withhi 1’ of 19 OC. The adjustable valve allowed 0.5 < Up < 284 mm/s. The 
Plexiglas piston was accelerated from rest to its final velocity Up in less than 40 ma 
for Up = 284 mm/s. The roof and floor of the last 2 cm of the duct ending at the nozzle 
plane (see figure 2) were machined from a thickness d = 10 to 2 mm (see figure 4). 
This meant that for the caae of yr =yf  = y = 00, the ‘edge’ was 2 mm thick. 
However, microscope glasses 0.1 mm thick (also vital for LDA measurements near 
the wall) could be used to extend the nozzle, whose ‘edges’ at the exit then had a 
thickness d = 0.1 mm. 

Part of the flow was visualized by letting in an ink/alcohol mixture, either through 
a 0.4 mm diameter hole drilled from the end of the 2 mm thick wall at the nozzle 
in the mid-plane, or through a freely movable hypodermic needle of the same 
diameter. Photographs were then taken with either a Bolex 16H cine camera 
operating at between 24 and 64 frames per second, or an electrically-driven 
Olympus OM2 camera. The 5- and y-(laboratory frame) velocity components at 
various !?xed locations were measured with an LDA operating in the dual-scatter 
mode, using a noise-cancelling difference method described by Bowl,  Hiller & Meier 
(1972). 

4.1. Vortex trajectories 
Figure 4 shows a rolling-up vortex pair photographed from the side (a small secondary 
vortex due to the relatively thick wall is also visible at the lower edge). Details of 
the complicated three-dimensional flow associated with vortex generation are 
discussed in Auerbach (1987). Nonetheless, halving the width W had no effect on the 
trajectory of the vortex centre in the mid-plane. An average was generally taken over 
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FIGURE 5. The initial angle pc0 which the vortex makes to the edge for various edge angles y ,  
together with theoretical predictions: -, present experiment U p  > 18 mm/s, d = 0 , l  mm; 
_--- , point vortex; -*-, Pullin (1978). 

three runs for the trajectory measurements. For low piston velocities (Up < 5 mm/s) 
the positive primary vorticity (see figure 1 b) detaching from within the upper edge 
showed no sign of roll-up, the flow detaching effectively steadily, in laminar-jet 
fashion, from the beginning of the motion. On increasing the piston velocity this 
vorticity rolled up into a concentrated vortex with a well-defined centre. Figure 5 
shows the dependence of the initial angle pco - that angle Bc shown in figure 1 at that 
moment when the centre first becomes definable - on the edge angle y. For the case 
y = 0" secondary negative vorticity detaching from above the upper edge was simply 
incorporated into the primary vortex without showing any sign of roll-up in its own 
sense. However, for 60" < y < 150° this secondary vorticity rolled up to form its own 
centre at virtually the same time as the primary vortex was definable. The 
experimental curve seems to flatten out in this region, having a turning point in the 
region of y = 90". 

For piston velocities 284 2 Up 3 18 mm/s the initial angle was independent of the 
piston velocity. The two dashed lines are theoretical predictions: the lower, almost 
straight, line is the point-vortex solution (5) .  The upper line stems from Pullin's 
(1978) calculations, which include the effect of the rolling-up vortex sheet. As can 
be seen, the point-vortex solution agrees very well with our experimental results for 
small edge angles. Pullin's results, on the other hand, agree better for larger edge 
angles, the point-vortex model predicting a path at 30" to a straight-angled 'edge'. 
Since Pullin's (1978) theory is without secondary vorticity, it  is noteworthy that he 
obtains best agreement where the secondary vortex is more pronounced. 

Let us now consider the components of the trajectory. In  general 
(284 2 Up 2 30 mm/s) the time power laws for the 2- and y-coordinates (laboratory 
and edge-based frames being identical for y = 0") are essentially the same as those 
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FIGURE 6. Effect of changing the piston velocity on the x-component of the vortex trajectory, 
y = 0'. U p  (from left to right): 284; 192; 120; 80; 46; 30; 24; 18 mm/s. 

found by Didden (1979) for ring vortices, namely z - ti and y - d. The time power 
for the y-component is the same as that predicted by (6). Our experimentally found 
law y = ( q7g t)i is nonetheless different from y = (Up t)i ((6) with Up = V ) .  No such 
comparison is possible for the z-component, for its time power is much larger than 
f. Figure 6 shows the x-coordinates of the path. For larger piston velocities each curve 
shows an initially decreasing (from t )  time power, which then however increases to 
its initial value, the increase beginning at a time t x 1.6H/ Up. Finally, on extending 
the lower edge to the end of the duct by adding a plate, we could essentially duplicate 
Blondeaux & De Bernadinis' (1983) geometry as a special case. For t < t, the inclusion 
of this plate did not change the trajectories, indicating that this particular form of 
distant geometry is not responsible for the non-self-similarity of the flow. 

4.2. Circulation produced at the edge 
In order to ascertain the vorticity, and thus the circulation passing the nozzle plane 
in the mid-plane (see figure 2), a number of velocity measurements were made in the 
mid-plane using an LDA, each measurement lasting 2s .  The u-component was 
measured in the nozzle plane at the following positions within the upper nozzle wall 
(y = 30 mm): y = 29.80, 29.52, 29.30, 29.96, 28, 27, 26 and 25 mm. These measure- 
ments enabled us to calculate the (au/ay)-term of the vorticity. The (&/ax)-terrn of 
the vorticity was obtained by measuring the v-component of the velocity 1 mm 
upstream, as well as 1 mm downstream of the nozzle plane. Such sets of measurements 
were taken for piston velocities Up = 18, 30 and 46mm/s for y = Oo, and 
Up = 30 mm/s for y = 90'. From the development of the vorticity the circulation 
could be calculated (cf. Didden 1979). 

Figure 7 shows this circulation as a function of time. One sees that, although it 
is initially substantially smaller than similarity-theory predictions, the virtually 



Trajectory and circulation of the starting vortex 195 

0.01 
1 I 

0.1 1 .o .O 

6) 
FIQURE 7. Circulation aa a function of time for various edge angles y and piston velocities Up. -, 
Present experiment (see graph for parameters); -*-, Didden (1979), y = 0", Up = 46 mm/s. 
y = O", U = 30 mm/s: ---, Pullin (1978); ----, point vortex; ----, slug-flow model. P 
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constant slopes at later times are substantially steeper than those predicted by (7), 
and far closer to those predicted by the slug-flow model of r = O.5Vp t .  Further, the 
two curves for Up = 30 mm/s are very close to each other, indicating a virtual 
independence of the circulation on the edge angle y a t  that speed. 

We can now plot the non-dimensionalized distance rh/(I'ty = Iz,l/(Tt)! as shown in 
figure 8. As can be seen, for large times our curves converge to Pullin's (1978) 
predictions including the spiral somewhat more closely than they do to predictions 
due to the point-vortex model. It is surprising that there is any agreement whatsoever 
between the theories and the experiment, considering the large differences between 
them for both the circulation and the 2-component of the trajectory. 

The experimental curves deviate sharply from the theoretical ones for small times, 
the non-dimensional distance being greater than that predicted by theory; this 
appears to be related to the discrepancy between theory and experiment in the 
magnitude of the initial circulation. The deviation is greatest for y = 90°, owing to 
the relatively small effect of changing the edge angle on the circulation production 
rate in the experiment (see figure 7). 

From figure 8 we see that Didden's (1979) non-dimensionalized distance for rings 
is much larger than ours (both with Up = 46 mm/s) for longer times. Now, his 
acceleration time was 240 ms, ours 20 ms. The behaviour of the secondary vorticity 
(rolling/not rolling up) may be influenced by the different histories, although this is 
not visible in the trajectories. Nonetheless one might expect this influence to become 
less significant with time. The other possibility lies in the difference in geometries, 
mentioned in $2. For the case of a ring vortex the effect of the neighbouring vortex 
element would induce an additional translational velocity from the very beginning 
of the motion. Now once the vortex has receded from the edge, one might expect the 
ratio of the translational velocity of the ring to the pair to be O[log8R/c]. Didden 
(1977) gives a core radius of 6.4 mm to a ring of radius 32 mm, yielding 3.7 for the 
above ratio (carried out on a ring with a Up = 111 mm/s). From figure 8 we see that 
at t = i s ,  by which time the y-motion has ceased, and the ratio of the non- 
dimensionalized distance of the ring to the pair is 1.8, having decreased to 1.6 at 
t = 2 s. Further, from figure 7, after 0.5 s the pair-to-ring circulation ratio is 4, 
yielding a pair-to-ring distance ratio of 2.1. Since the time powers for rings and pairs 
are the same, both for the circulation production as well as for the 2-trajectory, this 
ratio is also the ring-to-pair translational-velocity ratio. The effect is there, but the 
value is somewhat low. As discussed earlier, Pullin's (1978) theory takes the difference 
in the geometry into account by the constant q in the lengthscale in the form of 
(2) as initially discussed. His formulation for the vortex generation leaves q in 
the lengthscale, extracting p - the vortex-model-dependent parameter - from the 
lengthscale, and dividing i t  into two model-dependent factors C and Q. His 
formulation for the relation between r and s then leads to the non-dimensional 
radius above being vortex-model dependent but independent of the geometry - an 
unjustifiable result because of the above experimentally found mutual influence for 
rings. 

5. Why is vortex roll-up non-self-similar? 

Let us first collect our main results. 
Vortex pairs and rings have similar initial non-self-similar trajectories. 
A wall introduced far from the salient edge does not affect the initial trajectory. 
The existence of the endwalls does not affect the trajectory. 
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Changing the edge angle y has relatively little effect on the circulation (figure 7). 
The predicted initial circulation (figure 7) is too large. 
The predicted slope for the circulation (figure 7) is too small. 
The self-induced velocity due to the curvature of ring vortices is significant. 

A t  the outset we mentioned seven possible processes that may be important for the 
non-self-similar behaviour of the starting vortex. Some of these may now be ruled out 
with a measure of certainty. The idea that a distant geometry, such as those 
mentioned by Blondeaux & De Bernadinis (1983), affects the initial flow, does not 
Seem correct. Further Didden's (1979,1982) suggestion, that the axisymmetry of the 
geometry affects the self-similarity, seems also not to be borne out by experiment. 
As to effects of diffusive viscous origin, although they must affect the initial flow, 
the times in which these are active are so small that it  seems unlikely that they could 
affect the flow significantly. The endwalls seem to have no effect on the trajectory 
of the vortex centre in the mid-plane. 

The existence of secondary vorticity will have two immediate effects on the flow. 
It will tend to thicken the ejected shear layer and will tend to roll-up in its own sense. 
The effect of the thickness might be expected not to be large once the vortex structure 
is large in comparison. It will, however, reduce the effective circulation of the vortex 
(in figure 7 circulation generated above the nozzle was not included). As to the 
time-power law of the vortex centres, there is a similarity between the initial 
motion and that when the vortex begins being affected by the entraining motion of 
the developing jet. The centres of faster moving vortices move along an initially 
curved trajectory, straightening out for a while before again following a curved path. 
Since the power to which the y-component of the trajectory must be raised remains 
f ,  this change is reflected entirely by the changing time power for the z-component, 
being initially %, then briefly reducing for higher piston velocities, again increasing 
to take on its initial value of Q. We saw from figure 6 that this increase takes place 
at approximately t = t, = 1.6H/Up, and seems to be associated with the moving 
vortex becoming aware of its partner in a field that changes its character from that 
of an edge flow to that of the entraining jet discussed earlier. Yet at the beginning 
of the motion, the detached (and, for certain geometries, rolling-up) secondary 
circulation is of an intensity comparable with that of the primary vortex (25 yo for 
ring vortices, Didden 1979), and we have a true (albeit tiny) vortex pair at the edge, 
rather than a single vortex. One possible interpretation for the initial Q-value is that 
the negative leeward vorticity acts in the same way for the beginning of the trajectory 
as does its partner for t > t,. At this stage however, one cannot conclude which of 
the effects, secondary vorticity (in particular when rolling up) or viscous entrainment, 
is more important. One might then interpret the reduction in the power (towards 3 1 )  
as indicating a tendency for the flow to follow (4), the similarity-theory prediction. 

Finally, what is the effect of rolled-up secondary vorticity on the circulation ? 
Insofar as it is reasonable to replace a detached boundary layer with a boundary, 
the most obvious effect of the former is that it  will change the effective geometry 
at the edge, tending to make the sharp edge blunter. This meana that rolled-up 
secondary vorticity will tend to increase the value of y ,  as well as reduce the effect 
of changing y on the circulation. From (7), increasing y from 0' to 180' increases the 
power to which the time is raised from t to 1. On the other hand one can show that 
the coefficient oft  decreases for all times t < 3.7 s. Both these tendencies are present 
in our experiments. 

On the basis of the above discussion it seems that the simple potential approach 
used does not adequately describe the motion of the starting vortex. Either the basic 
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flow or the vortex model are at fault. The basic flow onto which the vortex is 
superposed may well not be a pure edge flow, but one that already has the character 
of an entraining jet flow. On the other hand, the vortex model fails to incorporate 
secondary vorticity which, particularly when rolled up, might be expected to be 
dynamically important. 
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